
Laboratory 1 Introduction. Functions in Python

Laboratory 1: Introduction. Functions in Python

1. About Python
Overview
Python
multiple programming paradigms such as:

• procedural programming;
• object oriented programming;
• functional programming.

they are entered.

Work environment
Once we write sample programs it is useful to save them so that we can reuse them. Python

saved in files.pyit is run from the command line (cmd/terminal) with

To simplify the process we can use an IDE (Integrated Development Environment). An IDE
is a program that usually contains at least 3 things: code editor, compiler and debugger.
One such IDE is IDLE. It can be installed very easily

IDLE

window. Here we can run code snippets. If we want to write programs in a file that we can

code that can be saved to a file. To compile and run a program pressRun->Run Modulesor
the F5 key. Recently used files can be easily accessed fromFiles->Recent Files. To navigate
the command history in the interpreter we can use:

• Alt-p : previous command
• Alt-n : next command

Translated from Romanian to English - www.onlinedoctranslator.com

programs are written in text files with the extension .py. They can be edited with anything text editor
(for example Notepad++,not Word that edits files.dock with specific formatting). These programs

it is a programming language interpreted,dynamic and high level. It supports

a interpreter can run (evaluate) program fragments (expressions or statements) as

command python 3 file.py

When opening the IDLE program, a window called IDLE Shell. The interpreter runs in this

 save and later run, we can press File->New File to open another window. Here we can write

https://docs.python.org/3/
https://www.onlinedoctranslator.com/en/?utm_source=onlinedoctranslator&utm_medium=pdf&utm_campaign=attribution

Laboratory 1 Introduction. Functions in Python

2. Python - Fundamentals Evaluation
of some expressions

expressions are calculations with numbers, written in the usual mathematical notation. For example,
we can enter:

> > > 2+3

and the interpreter answers:

5

In the first frame >>> represents the interpreter's prompter (so it should not be
entered), and in the second frame, without the prompter, is the answer given by the
interpreter, namely 5.
Spaces within the expression do not matter, we can also write:

> > > 2 + 3

In addition to the addition operation, there are also subtraction (-), multiplication (*), division (/),
modulo (%) and exponentiation(**).

Data types
Python provides 4 types of primitive data:

• Integer
• Float
• String
• Boolean

Primitive data types are immutable, that is, once they have been created they cannot be
changed. If a variable x = 3 changes its value to 4, a new integer is actually created and
assigned to the variable x. We cannot do:

> > > 2 = 5

1. Integer

of unlimited length (integers with values between -∞ and ∞).

At the prompter>>>of the interpreter we can in general evaluate expressions. The simplest

The data type integer (int)represents unsigned or unsigned numeric data, without decimals, and

Syntax Error: cannot assign to literal here. Maybe you meant '==' instead of '='?

Laboratory 1 Introduction. Functions in Python

Ex: 3, 6, -234.

2. Float

Ex: 3.34, -0.123456.

! Careful2 is an integer value. For a real value (float) we must write 2.0 (or abbreviated 2.). In
Python the type conversion from int to float is done automatically. Thus, the result of
operations containing both integers and real numbers will be a real number (eg 5 + 2.0 will
give 7.0).
We can also use the float() function if we want to do a conversion explicitly:

> > > float (3 * 2)
6.0

string in Python, we use the signs '' (apostrophe) or "" (quotes).
Example: 'book' , "23abc".
We can perform various operations on a character string. One of the most common
operations is string concatenation. This is done through the + operator:

> > > 'abc' + 'def'
'abcdef'

The characters in a string can be accessed directly by "string"[index]:

> > > 'A string'[2] 's'

The result is the third character (character numbering starts at 0). Python also allows
accessing characters using negative index values. For the example below, selecting any
other integer that is outside the range [-8; 7] will throw an exception:

'A' ' ' 's' 't' 'r' 'i' 'n' 'g'
0 1 2 3 4 5 6 7

- 8 -7 -6 -5 -4 -3 -2 -1
> > > 'A string'[-8]

The data type float is used to represent signed or unsigned floating point numbers.

String(string) represents a collection of characters, words, or phrases. To create a
3. String

Laboratory 1 Introduction. Functions in Python

'A'

not be done automatically, but you will have to do it using one of the int() or float() functions.

> > > 5 + int('2') 7

For more operations that can be applied to character strings (such as converting a string
to lowercase/uppercase, splitting a string, replacing a certain character in a string, etc.)

4. Boolean

expressions.

> > > 3 == 4
False

Using comparison operators==(equal), !=(different),>(bigger),<(smaller),>=(greater than or equal
to),<=(less than or equal to), we can make comparisons between different expressions. To write

When using and, if both operands have the logical value True, then the final result will be
True. If at least one operand is False, the entire expression will evaluate to False.

> > > 3 == (2 + 1) and (3 + 1) != (2 ** 2) False

In the case of the logical operator or, it is sufficient for at least one of the two operands to be
true for the resulting expression to be true. If both operands are False, then the result of the
expression will also be False.

> > > 3 == (2 + 1) or (3 + 1) != (2 ** 2) True

The logical operator not applies to a single operand. If it has the value True, then the final
result will be false. If the operand is False, then the final result will be True.

> > > not (3 + 1) != (2 ** 2)

mathematical operations with character strings containing numeric values, the conversion will

more complicated conditions you can use keywords and, hours and note.

you can consult page.

The data type boolean represents the truth value of an expression. It can have the
values false or False. A boolean is usually used in writing conditions or comparing

Careful Because Python is a programming language strongly typed, if you want to perform

https://www.w3schools.com/python/python_ref_string.asp

Laboratory 1 Introduction. Functions in Python

false

In addition to these fundamental data types, Python provides 4 other predefined types to
hold collections of data. Thus, in Python we can work with the following:

• List
•
•
• Dictionary

(more details about these types, as well as the other two, will be presented in future labs).

the elements being separated from each other by a comma:

Example: even_digits_list = [0, 2, 4, 6, 8]

If we want to access an element of the list, we proceed in the same way as in the case of
character strings (Example: if we want to access element 2 of the listevenDigitswe will write
evenDigits[1], the numbering also in this case starting from 0).

Example: even_digits_tuple = (0, 2, 4, 6, 8)

print
So far we have used the fact that the interpreter automatically displays the result of an
evaluation. Writing and running standalone programs, however, requires functions that print
values.
Python has the print() function, which can be used to print on the screen various messages or
data types that will be converted to string. The newline character is represented as in
C: '\n'.
We can switch to a new line by callingprint('\n').
The print() function accepts a variable number of parameters. Thus, we can print
different strings as follows:

> > > print("Hello.", "How are you?") Hello. How
are you?

We can also specify a separator between printed strings by assigning a string to
theSeptemberof the print function:

Tuple

Set

In the following we only present how to define the data types list and tuple in Python

Thus, if we want to define a list, we will enumerate its elements between square brackets,

Similar to lists, we can define a tuple using round brackets:

Laboratory 1 Introduction. Functions in Python

> > > print("Hello.", "How are you?", sep="\n-----\n") Hello.

- - - - -
How are you?

We can also use the print() function in a way similar to the printf function in C, as follows:

> > > print("Result: %d + %.2f = %.2f" % (2, 3.25, 2 + 3.25)) Result: 2 + 3.25 = 5.25

Conditional structure
By default, Python code executes sequentially, line by line, but there may be situations
where a statement is executed only if a certain condition is met. To achieve this we can use
the following structure:

if condition_1:
instruction_block_1

elif condition_2:
instruction_block_2

otherwise:

instruction_block_3

Remarks
• there can be any number of elif branches;
• the elif branch may be completely absent from the structure;

• the else branch is optional (may occur once or not at all).

Example:

if (x < 0):
print("x < 0")

elif (x <= 1):
print("0 <= x <= 1") else:

print("x > 1")

The above example checks if the variable x is less than 0, in which case "x<0" is printed. If x
is greater than or equal to 0 (that is, the first condition is not checked), the condition on
the elif branch will be checked, namely if x is less than or equal to 1. If this condition is also
not checked (i.e. x is greater than 1) the statement corresponding to the else branch will
be executed.

Laboratory 1 Introduction. Functions in Python

Peculiarities of syntax
1. Indentation
In Python, indentation is very important in writing code. Unlike other programming

2. Comments
Comments are used to explain portions of code. In Python comments start with the #
symbol:

This is a single line comment.

Comments can also be placed at the end of a line:

print("Python") #This is another example.

If the comment spans multiple lines, each line can start with
or we can opt to use """ (3 quotes at the beginning of the comment and 3 quotes at the
end of it):

"""This is
A
multiline comment"""
print(5 + 2)

Inserting external code (Module)
As in other programming languages, functions and constants from other files can be

> > > import math

To now use features like floor or ceil:

> > > math.floor(3.7) 3

> > > math.ceil(3.7) 4

languages that use braces { }, in Python indentation is used for blocks of code.
Indentation is always preceded by the sign:(two points).

entered in Python. A useful example of this is given by the inclusion of the math module.

https://docs.python.org/3/library/math.html

Laboratory 1 Introduction. Functions in Python

If we want to rename the imported module we can use:

> > > import math as m

Now we can use the functions by calling:

> > > m.floor(3.7) 3

Observation!functionint()can be used to truncate the fractional part.

3. Functional programming
In functional programming, programs are built by applying and composing functions.
Unlike procedural programming, where sequences of instructions are used that change
the state of the program, functional programming is based on the evaluation of
mathematical functions, thus avoiding mutable state and data.
Although Python allows us to work directly with data and modify it, in order to program functionally
it is very important not to write functions that change the global state of the program when they
are called.

4.Functions in Python
Defining

is passed, followed by round brackets where its parameters are placed separated by a comma, and
at the end the symbol :(two dots) is added. If the function has no parameters, you will not put
anything between the brackets, but their presence is mandatory.

Observation!Don't forget to indent the entire function body!

def function_name(param_1, param_2, param_3, ..., param_n):
some_instructions

Thus, the functionf:ℤ→ℤ,f(x) = x + 3it is written in Python:

def f(x):
return x + 3

We can also define the function with the help of the interpreter:

In Python functions are defined using the key word def. After the keyword, the name of the function

Laboratory 1 Introduction. Functions in Python

> > > def f(x):
. . .
. . .

return x + 3

We press enter twice to signal to the interpreter that we have finished writing the code. The
function will remain defined in memory until the interpreter is closed. The interpreter's ...
prompter indicates that the code continues on the next line.

Calling functions
Once the function is defined, it is called as follows:

> > > f(1)
4

When we call a function we can also specify the name of the parameter at the call:

> > > f(x=5)
8

We can also give the function a complex expression as a parameter:

> > > f(2*3)
9

Functions with multiple parameters
Let the function in mathematics:integer_add:ℤxℤ→ℤ,integer_add(x, y) = x + y The
most common way to write this function in a Python program is:

def integer_add(x, y):
return x + y

Functions that return multiple values
In Python we can implement functions that return multiple values using lists. For
example, if we want to implement the function f:ℤxℤ→ℤxℤ,f(x, y) = [x + y, x - y]we can write
like this:

def f(x, y):
return [x + y, x - y]

Laboratory 1 Introduction. Functions in Python

Another way we can write such functions is by using the Tuple data type:

def f(x, y):
return x + y, x - y

Calling example:

result_1, result_2 = f(2, 1)

Example
In functional programming we want to evaluate expressions, not execute a series of statements.
Thus, the value returned by one function will be used as a parameter by another function.

However, in the example below, although print() is executed inside a function, this call does
not affect system state.

def print_abs(x):
if (x > 0):

print("Positive: " + str(x)) return x

print("Negative: " + str(x)) return -x
else:

